Evolutionary Radial Basis Function Network for Classificatory Problems
نویسندگان
چکیده
Classification has been a major problem of study whose application includes speaker recognition, character recognition, etc. In this paper we first adapt the Radial Basis Function Network (RBFN) for classification problems and then use customized Evolutionary Algorithms to evolve the RBFN. The neurons of the RBFN correspond to some class out of the available output classes. Linear addition of only the same class neurons is taken and an additional layer is added that decides the final output on the basis of maximum activation of each class. Evolutionary algorithm has operators jump and add neuron that aid in optimization. Penalty has been used to restrict overgrowth of network. The algorithm was used to solve the problem of detection of PIMA Indian diabetes and gave a recognition rate of 82.37%, which was better than most of the commonly known algorithms in literature.
منابع مشابه
Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملImproving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm
Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...
متن کاملEvRBF: Evolving RBF Neural Networks for classification problems
This paper shows the latest results of the EvRBF algorithm applied to classification problems. EvRBF is an evolutionary algorithm intended to automatically design Radial Basis Functions Neural Networks (RBFNN), being its main advantage that establishes the whole set of parameters of the nets. Key–Words: Radial basis function neural networks, evolutionary algorithms, evolutionary operators,EvRBF...
متن کاملA Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems
This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFN (MEPGAN). The propos...
متن کاملComparing Two Methods of Neural Networks to Evaluate Dead Oil Viscosity
Reservoir characterization and asset management require comprehensive information about formation fluids. In fact, it is not possible to find accurate solutions to many petroleum engineering problems without having accurate pressure-volume-temperature (PVT) data. Traditionally, fluid information has been obtained by capturing samples and then by measuring the PVT properties in a laboratory. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCSA
دوره 7 شماره
صفحات -
تاریخ انتشار 2010